Trace common and unique identifications between different software outputs
Source:R/trace_level.R
trace_level.Rd
Identifications of two input data frames are compared and categorized in unique and common entries.
Usage
trace_level(
input_df1,
input_df2,
analysis_name1 = "input_df1",
analysis_name2 = "input_df2",
level = c("precursor", "modified_peptides", "proteinGroups"),
filter_unknown_mods = TRUE
)
Arguments
- input_df1
A tibble with flowTraceR's standardized precursor, modified peptide, or proteinGroup level information - required column depends on chosen
level
.- input_df2
A tibble with flowTraceR's standardized precursor, modified peptide, or proteinGroup level information - required column depends on chosen
level
.- analysis_name1
output tibble name for input_df1 - default is
"input_df1"
.- analysis_name2
output tibble name for input_df2 - default is
"input_df2"
.- level
"precursor", "modified_peptides", "proteinGroups"
- respective level for tracing common vs. unique entries. Default is precursor.- filter_unknown_mods
Logical value, default is TRUE. If TRUE, unknown modifications are filtered out - requires "traceR_precursor_unknownMods" or "traceR_mod.peptides_unknownMods" column; depends on chosen
level
.
Value
This function returns a list with both original submitted tibbles
- input_df1 and input_df2 - including one of the following new columns depending on chosen level
:
traceR_traced_precursor - categorization on precursor level in common and unique entries.
traceR_traced_mod.peptides - categorization on modified peptide level in common and unique entries.
traceR_traced_proteinGroups - categorization on proteinGroups level in common and unique entries.
Details
Based on flowTraceR's standardized output format two software outputs can be compared and categorized into common and unique identifications for a chosen level: precursor, modified peptide or proteinGroup level.
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tibble)
# DIA-NN example data
diann <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "P02671", "Q92496", "DummyProt"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "RLEVDIDIK",
"EGIVEYPR", "ALTDM(DummyModification)PQMK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE, TRUE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2",
"EGIVEYPR2", "ALTDM(DummyModification)PQMK3" ),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE, TRUE)
)
# Spectronaut example data
spectronaut <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "Q02985", "P02671"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "EGIVEYPR", "M(UniMod:35)KPVPDLVPGNFK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "EGIVEYPR2", "M(UniMod:35)KPVPDLVPGNFK2"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE)
)
# trace proteinGroup level
traced_proteinGroups <- trace_level(
input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
level = "proteinGroups",
filter_unknown_mods = TRUE
)
# trace precursor level
traced_pecursor <- trace_level(
input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
level = "precursor",
filter_unknown_mods = TRUE
)